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We investigate decay properties of correlation functions in a class of chaotic 
billiards. First we consider the statistics of Poincar~ recurrences (induced by a 
partition of the billiard): the results are in agreement with theoretical bounds by 
Bunimovich, Sinai, and Bleher, and are consistent with a purely exponential 
decay of correlations out of marginality. We then turn to the analysis of 
the velocity-velocity correlation function: except for intermittent situations, the 
decay is purely exponential, and the decay rates scale in a simple way with the 
(uniform) curvature of the dispersing arcs. A power-law decay is instead observed 
when the system is equivalent to an infinite-horizon Lorentz gas. Comments are 
given on the behaviour of other types of correlation functions, whose decay, 
during the observed time scale, appears slower than exponential. 
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1. I N T R O D U C T I O N  

In this paper we present some numerical experiments performed on a class of 
two-dimensional chaotic billiards. In particular we will be concerned with 
decay properties of correlation functions: though extensive investigations have 
been carried out both from a rigorous point of view tl'2~ and by numerical 
investigations, t3-61 considerable effort is still being devoted to this problem (as 
regards both accurate simulations 17~ and new rigorous resultslS~). 

We will consider both diamond (D) and Sinai billiards (S) (unit cells 
of a periodic Lorentz gas), see Fig. 1 and 2): the dynamics refers to a 
point particle with unit velocity bouncing elastically against the boundary 
(fiat segments in S are to be considered as coinciding with a 2D torus 
boundary): S' denotes the continuous time evolution, acting on the phase 
space J / ,  which is given by the set of configuration coordinates and the 
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Fig. 1. Boundary of the diamond billiard system: R is the radius of curvature of the arcs, xm 
is taken equal to one in simulations. 

unit circle of angles ~o formed by v with a fixed direction. The system is 
ergodic and mixing 19~ and the invariant measure is proport ional  to the 
Lebesgue measure on ,/#, dkt(z) = (2hA) - l  d.x" dy dco (A being the area of the 
billiard region). By considering successive collisions with the arcs we may 
also introduce a discrete-time dynamical system, with evolution operator T", 
on the phase space s//'l (consisting of a coordinate l along the set of curve arcs, 
and ~0 e [ - n / 2 ,  re/2], the angle between the incoming velocity and the out- 
ward normal of the arc at the point corresponding to l). The invariant measure 
for this system is dv(~_) = (2P) - ~ dl cos cp dq~, where P is the total arc length. 

The mixing property guarantees that correlation functions vanish 
asymptotically: the goal here is to characterize their decay: as correlation 
functions are intimately linked to transport  coefficients, this is an issue of the 
utmost physical import. For  dynamical functions on the phase space correla- 
tion functions are defined as (since we are dealing with ergodic systems) 

(s ) Cs( t) = ~ /~ dl~(z) f (  S'Z) f ( z )  - . . . . .  a dlx(z) f (z )  - (1) 

or, when discrete dynamics is considered, 

Cg(n)=f  j/ dv(,) g( T",) g ( ' ) - ( ! , a ,  dv(,) g(~)) 2 (2) 
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Fig. 2. Boundary of the Sinai billiard system: r t and r2 are the radii of curvature of the arcs: 
depending on the values of geometric parameters, this system may correspond to an elemen- 
tary cell of either the 0-H or the oo-H Lorentz gas. 

From a physical point a view a natural choice for the dynamical function 
is a component of the velocity, as it is directly related to diffusive properties 
of the system: for a system S corresponding to the Lorentz gas with finite 
horizon (henceforth called 0-H, according to ref. 7), a bound was proposed 
in ref. 2 in terms of a stretched exponential 

ICf(t) l  <~ exp(0~P') (3) 

with 0~<y~< 1, while in the case of discrete dynamics, a bound was 
obtained in ref. 1 (and refined in ref. 10) 

I C~(n)l ~ exp(~l n r') (4) 

with 1/2~<y1~<1. ~~ The same bounds are supposed to hold for D, 
provided arcs do not meet tangentiallyJ 2) When arcs meet tangentially, a 
renormalization argument ~3~ (which takes into account successive collisions 
within the same corner) strongly suggests the behavior 

1 
ICg(n)J ~ -  (5) 

n 

while for the corresponding continuous dynamics a (sub)exponential 
bound should still hold, 12) 

[Cf(t)[ <~ exp(0cF) (6) 
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In the case of a Sinai billiard corresponding to a Lorentz gas with infinite 
horizon (~-H),  it is believed t~' 12)that 

1 
Cf(t) ~ t  (7) 

while the discrete dynamics is still bounded exponentially, as in (4). I lO)The 
main mathematical difficulty in dealing with these systems is due to 
singularities (induced by orbits touching tangentially an arc): this is reflected 
in the fact that Markov partitions are not finite (but countable t~3" ~o)) and 
this does not ensure a purely exponential decay of correlations, as guaran- 
teed in the finite case by standard finite-state Markov chains argumentsJ~4) 
The topological complexity of the system is also evidenced by the relatively 
poor performance of periodic orbit calculations, t~5"16~ which usually 
provide a very efficient tool to deal with hyperbolic systems, t~7~ 

However, for a class of somehow simpler systems (piecewise linear 
automorphisms on the two-torus), Chernov ~8) proved pure exponential 
decay of correlations in the presence of both hyperbolicity and singularities. 
We mention that Liverani has recently developed a different technique t8' tg) 
which might be applicable to cases under consideration (when intermittency 
phenomena are not present), and is capable of proving pure exponential 
decay without making use of Markov partitions. It essentially probes the 
gap between the probability conservation eigenvalue of the Perron- 
Frobenius operator and the rest of the spectrum (which guides correlation 
decayl'-~ by selecting an invariant cone of functions over which the 
Perron-Frobenius operator is a contraction according to a suitable metric: 
the rate of contraction gives the exponential decay rate of correlations. 

For D and 0-H systems accurate numerical experiments are consistent 
with a pure exponential decay ~7~ (see also ref. 6), while earlier investigations 
seemed to support subexponential decay tS) (see, however, the next sections 
for comments on this discrepancy). 

The main difficulty in numerical investigations is that when decay is 
very fast, statistical errors become relevant after a very short time. In par- 
ticular phase averages appearing in correlation functions are estimated 
through Monte Carlo integration: according to (nonrigorous) conventional 
wisdom ~3) 

I d V f m V ( f ) + ( ( f 2 ) - - ( f ) ~ )  N (8) 

so that errors scale like N -t/z (N being the number of sampling points). 
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A subtler issue in the interpretation of numerical results is connected 
with sensitive dependence upon initial conditions (as we are dealing with 
hyperbolic systems): a positive Lyapunov exponent induces errors growing 
as 6Xo. e:": according to ref. 7, when this error (6x o being determined by 
computer precision) surpasses the statistical errors, then the averages are to 
be interpreted as hydrodynamic averages: nevertheless we do not observe 
any dramatic qualitative or quantitative change in simulations once the 
theoretical Lyapunov barrier is surpassed. A similar heuristic argument 
characterizing the role of Lyapunov-induced errors has been discussed by 
Ruelle, 12~ when considering the behavior of correlations in the presence of 
noise (in numerical experiments the level of noise v is determined by the 
significance employed). It is suggested that the noise will swamp the real 
time evolution after times of the order of [log vl/2], with 2] being the 
largest characteristic exponent. If correlations are investigated beyond this 
range, the effect of noise should lead to a pure exponential decay, with a 
rate coinciding with the sum of positive characteristic exponents (we never 
observed such a behavior in our investigations). Thus, on strictly empirical 
grounds, we consider the statistical errors as our more troublesome source 
of errors. We also remark that, according to refs. 8, 21, and 22, optimal 
estimates of correlation decay rates should be robust with respect to noise 
(within the formerly mentioned bounds), and this theoretical expectation is 
physically relevant, as our ultimate hope is to show the experimental 
relevance of our results: this implies some notion of "robustness", which 
should be connected to insensitivity of small error propagation, in the same 
fashion as for Kolmogorov's notion of "physical" invariant measures. ~24) 

The paper is organized as follows: we investigate preliminarily "cross- 
ing" statistics, as they are easier to access numerically: our main purpose 
is to show that though operating in a heuristic way, marginal behavior is 
correctly reproduced, and in purely hyperbolic situations pure exponential 
behavior is observed. 

Then we turn to an analysis of the velocity-velocity correlation func- 
tion. In the D case (out of marginal stability) pure exponential decay is 
observed, and some evidence for a scaling behavior with respect to 
geometrical parameter is presented (some of the results have been pre- 
sented in ref. 26). We moreover show how asymptotic power-law decay 
seems to take'place when oo-H cases are considered. 

Finally we also show results from simulations employing another class 
of correlation functions(S): the qualitative features look different, yet a clear 
theoretical argument supporting our numerical results is still missing. 

Our findings are consistent with the notion that correlation decay is 
governed both by generic properties of the underlying dynamical system 
and by the "degree of smoothness" of the dynamical functions considered. 
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In fact, when operating with some appropnate space of smooth functions, 
the decay properties are dictated by resonances ~22) whose position (which 
rules the exponential rate of decay as well as periodic modulations) does 
not depend on the particular function chosen (only prefactors do). On the 
other hand, spectral properties of the transfer operator (which is intimately 
connected to resonances) are sensitive to the choice of the function space 
for dynamical variables (see, for example, ref. 25). Results consistent with 
this picture were also obtained by Crawford and Cary, (27) who investigated 
the decay of correlations for square-integrable functions under the action of 
cat maps: by introducing an appropriate choice for basis vectors, they were 
able to prove the existence of widely different decay laws, ranging from 
faster than exponential to algebraic with arbitrary exponents, depending on 
the smoothness of the functions considered. 

O 

c5 i , l ~ , i , , I i J i , I i , , i I ' ' i , I ' ' ' ' I ' t , i I 

i 

~0  

Q_ I  

5 

"T 

i i , I , t ~ , I i t i , I i t , , i ~ , , t I . . . .  I , /  , , I ~ 

0.0 1. 2. 3. 4. 5. 6. 2. 
In n 

Fig. 3. (a) ]n Pi,t(n) vs. In n for the D tangent case ( N  . . . .  = ]07),the dashed line has slope 2. 
(b) [n -Pi,t(t) vs. t for the same case: here the decay is exponential. (c) ]n Pi,t(n) vs. n for an co-/-/ 
case (xm = 1, rt = r2 = 0.2, N~ro~ = 107); again exponential  behavior is found. {d) In Pi . t ( l )  vs. 
In t for the same case; a transit ion to power- law decay takes place: the dashed line has slope 2. 
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Fig. 3 (continued) 

2. "CROSSING"  STATISTICS 

The problem we address is the following: we partition the configura- 
tion space of the system under investigation (using a segment with shortest 
length joining two facing arcs in D, or a segment through the center 
parallel to the torus boundary in S) and run a single (or sample of) trajec- 
tory, recording {t~} (time from one crossing to the next) and {n=} (num- 
ber of collisions from one crossing to the next). From this data set we can 
approximately reconstruct ~d(t) and ~(n), probability distribution func- 
tions for the ~rossing time or collision number; then we build the survival 
probabilities 

Pi.t(t) = ~o(r) dr, Pi.t(n) = ~o(k) (9) 
k=,. 

These are monotonically decreasing functions of their argument and they 
are normalized to 1 at the origin. 
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c 

(3_ I 

(c) 

Our interest in these quantities originates from the fact that their 
integral plays a role analogous to correlation functions: it has been argued 
by Karney c-'8~ (see also ref. 29) that the quantities 

C r = dz  Pint(--'), C,,, = P in t (k)  (10)  
k = m  

are proportional to the probability that a particle is trapped in the same 
region at two times r (or m) apart: an analogous reasoning has been 
invoked by ref. 30 in dealing with the transition to chaos in standard-like 
mappings. 

The argument I-'8~ goes roughly as follows (we consider the case of dis- 
crete dynamics): if we denote by 17,. the mean collision number, then 
~d(k)/n,. is the probability that an iterate chosen at random is the endpoint 
of a string of k iterates on the same region, while kgd(k)/n,, is the proba- 
bility that an iterate chosen at random belongs to a string with collision 
time equal to k. So the probability that two iterates r apart chosen at 
random belong to the same string of single-subdomain collisions is 

0.0 S. 10. 15. 20. 
n 

Fig. 3 ( co,Z#med ) 
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Fig. 3 (continued) 

Y'.2:=~n_l(k-r)  go(k) and this sum is easily seen to coincide with 
~-.~=r II, 71 P i n t ( k )  . 

Our first step consists in checking this proposed analogy with correla- 
tion functions by investigating critical cases where theoretical estimates 
predict power-law behavior. As regards D in the tangent case, our results 
are shown in Figs. 3a and 3b: the (discrete) collision dynamics is charac- 
terized by an n -2 long-time tail for Pi,t(n) [which corresponds to an m - t  
asymptotic behavior for C .... in accord with ref. 3 cf. (5)], while the con- 
tinuous-time Pim(t) exhibits an exponential decay 121 [cf. (6)]. The opposite 
situation is observed when dealing with the oo-H case (Figs. 3c and 3d): 
the continuous-time dynamics is characterized by asymptotic power-law 
decay [Pint(t)~t-'-, C~ ~ r  - I ]  in accord with ref. 11 [cf. (7)], while the 
collision dynamics is characterized by exponential decay, t'~ The plots have 
been obtained by iterating a single initial condition: the resulting profiles 
are robust with respect to varying initial conditions or averaging over a 
small number of different trajectories, as in ref. 28. 
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Fig. 4. (a) In Pi,t(n) vs. n for a hyperbolic D case ( R = 2 0 . 5 1 8 ,  N ..... = 10s); the dashed line 
is determined by a least square fit. (b) In Pi,u(t) vs. t for the same D case; again the straight 
dashed line results from a least square fit. 

The ability to reproduce critical behavior suggests that the same 
method might be applied to explore hyperbolic parameter regions: we thus 
considered a number of D cases. A typical outcome is plotted in Figs. 4a 
and 4b, (here t is the absolute time; x m  = 1 throughout all D investiga- 
tions). By considering all points after the initial transient, an unweighted 
least-square fit gives for the slopes 7 , = 6 . 5 5 0 x l O - 2 _ _ 2 x l O  -5 and 
7,, = 7.563 x 10-2 4_ 6 • 10 -5 [notation is as follows: Pi,t(t) ~ exp( -7 ,"  t), 
P i n t ( n )  ~ exp( --7,," n)]. 

In Fig. 5 we show how these exponents vary by changing R in the D 
case: a smooth dependence is exhibited, roughly according to a power-law 
for large radius, within the hyperbolic range: in all of our simulations no 
deviation from pure exponential decay is observed. 
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Fig. 4 (continued) 

3. CORRELATION FUNCTIONS 

We start by investigating velocity-velocity correlation functions: for 
the D case we consider components of the velocity along a direction which 
is diagonal with respect to the orientation of Fig. 1 (this is equivalent to the 
vertical direction in the notation of ref. 7), while we consider components 
along the vertical direction in S systems (Fig. 2): we denote these com- 
ponents by ~. Correlation functions (continuous time) are thus denoted by 

~(t)  = <vAt) v,(O)) 

Angular brackets indicate averages over the invariant measure. For (dis- 
crete time) collision dynamics we consider analogously 

~(n) = (vAn) v=(O)} 
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We will always evaluate numerically these functions by Monte Carlo 
integration over a set of Nph initial conditions. The random generator we 
use in performing the integration is based on a subtractive method 
(suggested by Knuth t3~ ~): occasionally we checked that linear congruential 
methods did not alter the results (even the use of a regular grid of initial 
conditions does not lead to discrepancies; see ref. 6). As a further check we 
reproduced the results of ref. 7 with our methods. 

As a warmup we again consider the (discrete dynamics) tangent case 
for D systems: results are reported in Fig. 6 (which refers to Nph = 107), in 
which a power-law behavior is clearly exhibited. 

For  the D "standard ''t5'71 parameter value (R=2.236. . . )  we reob- 
tained the data shown by ref. 7 for cg(t)= (v~(t)v~(0)):  for a number of 
initial conditions Nph = 107 we get 7L, = 0.56 + 0.02 (by fitting the maxima 
not spoiled by statistical errors: note that our time scale differs from the 
one considered in ref. 7 by a factor 4.  x/~ due to a different choice of the 
overall length scale). As before, 7,, indicates the  exponential decay rate 
[~'(t) ~ exp( -7, ,"  t)]. 

In the standard case the decay is so rapid that extending the range of 
confidence by including significantly more (statistical error free) maxima is 
hopeless: we then investigated a number of other D cases in which the 
value of R is increased. Obviously in this case also initial transients are 
expanded, as the system is "less hyperbolic," but nevertheless we are able 
to generate much longer sequences of significant maxima (due to fast 
decrease of the exponential rate of decay). The duration of transients is 
supposed to be related to the inverse Lyapunov exponent, which for large 
radius scales like 2R ~ C-R-1/2132): a s  a matter of fact, (9) 

2 R = v- lim dr h'R(X~) ( 11 ) 

where 

K R ( X )  - -  

lo + 

1 (12) 

1 - - q -  
Rcos~b I l , +  21 

R cos ~2 

{ 1;} is the sequence of distances between successive past collisions and { ~b;} 
denotes the angles of outgoing Your with respect to the outward normal. 
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Table I. Half  Periods of Oscillation for a 
N u m b e r  of D Cases" 

R tp/2 

5.00 1.42 + 0.02 
7.81 1.41 + 0.05 

10.63 1.41 _+ 0.03 
13.45 1.41 _ 0.06 
14.87 1.41 _+ 0.03 
20.52 1.41 _ 0.06 
27.59 1.41 -I- 0.06 

"Errors are within a priori bounds in terms of the 
unit step used in numerical simulation. 

0 
o ' l ' l ' l , l , l , l , l , l , l , j , l , l , l , l , l , l , l , l , t , ] , l , l , l , i  

Fig. 7. 

i Ji . 1 . ir J .lJ . pl. i, 

5. 10. 

~ o .  

oil 
x/ 
'0.0 

x , ,  

, t , , I , 

15. 20. 25. 
t 

In JC(t)J vs. t for a D case (R = 5, Nph = 5 X 106); statistical errors relative to maxima 
are within circles; the dashed line is a least square fit using maximum points. 
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The expression (11) m a y  be evaluated explicitly in a number  of  cases: 
for the shortest  periodic orbit  we get 

v ( R+(D 2 ) 2spo _ D _ ~  l n . . .  D -  R -2DR)I/2 (13) 

(D is the distance between facing disks), which has the correct  asymptot ic  
behavior:  in all examined cases we checked that  the numerical  value of  the 
L y a p u n o v  exponent  is quite close to 2s.p .... so we use this value as an 
indication of  the degree of  hyperbolici ty,  as it can be computed  analyti-  
cally: the approx imate  identification 2. ,~ As.p.o. is also consistent with the 
numerical  investigations of  Benettin. ~32~ 

We studied a n u m b e r  of  different D systems (R ranging f rom 1.58 to 
27.59): the structure of  off(t) is always the same: it exhibits pure exponential  
decay and a super imposed  "universal"  oscil latory behavior  (there is a 
regular a l ternat ion of m a x i m a  and minima:  the half  periods are repor ted  in 
Table  I for a number  of  cases in which we have more  than  15 significant 

o 

T. 
~ o  

c 

Fig. 8. 

o 

' 10. 20. 30. ~;0. 50. 60, 20. 80. 90. 100. 
t 

In [C(t)[ vs. t for a D case (R = 14.866, Nph = 107);  the dashed line is a least square 
fit using maximum points; statistical errors at maxima are within circles. 
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maxima and minima): the periods of oscillation are always compatible with 
(6) the limiting value (2. x/~) for R ~ .  Some of the results are plotted in 

Figs. 7 and 8. 
A few comments are due, in order to appreciate better the limit of 

validity of our simulations: in all cases we studied, the location of maxima 
is well within the bound imposed by statistical error [whose order of 
magnitude is, however, estimated heuristically, using (8)]. Other potential 
sources of error 17'2~ involve an estimate of the initial transient and 
errors implied by the exponential divergence of trajectories. In particular, 
in ref. 7 it has been remarked (as we already recalled in the introduction) 
that after a time Tma ~ (such that e>~[exp(2T, .... )]/d,,,, where d,,, is the 
machine precision - 1 0  -16 for double-precision calculations and e is the 
statistical error) the phase averages employed in correlation function 
calculations are to be interpreted as hydrodynamic averages, as we can no 
longer claim that we are following real trajectories of the system. This is a 
subtle issue and we have no theoretical breakthrough (such as extension of 
shadowing properties) to put forward: empirically it is true, however, that 
D systems seem robust with respect to this issue, and breaking the Tma x 

0 

0 

c 

0 
r 

Fig. 9. 

o 

.4 
' 10. 20. 30. ":0. 50. 60. 20. 80. 90. 100. 

t. 

Same as Fig. 8: the almost unobservable dashed-dotted line is obtained with 
Nob = l 0  7, but using single-precision arithmetic, for which T.,a~ _- 33.5. 
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Table I|. Estimates of Transients and Maximum Dynamical Error-Free 
Correlation Times" 

R Nph 2/2~.p.o. Zmax 

5.000 5 x 106 3.7 53.9 
14.866 10 7 6.5 92.8 
2.236 2.5 • 10 7 2.4 34.1 

20.518 2 • 10 7 7.7 109.4 

"The values in the last column refer to double-precision computations. The data refer to Figs. 
7, 8, 12, and 13, respectively. 

barrier does not produce any sensible change in the estimate of slopes (see 
Fig. 9). In the absence of any good rigorous argument, our plots (and y,, 
estimates) refer, however, to simulations within the former limit (the rele- 
vant estimates are reported in Table II). No known results are available to 
get quantitative estimates of initial transients; these should be connected to 
inverse Lyapunov exponents (and the estimate T t . . . .  ient ~2 /2  was empiri- 
cally used in ref. 7; (see again Table II for estimates regarding our simula- 
tions): in estimating the slopes we excluded maxima within this range, but 
we hardly see any systematic quantitative change regularly taking place 
after some t ~ C/ ) . s .p .  o initial time scale]. 

In Fig. 10 we show how )'o varies with R: for large values of R a 
power-law behavior of exponent seems to show up: we do not have any 
scaling argument capable of explaining this behavior even approximately, 
but we believe that this is worth further investigation (maybe via some 
mean-field treatment, in the same spirit as ref. 32). While again a power- 
law behavior is obtained, the corresponding "critical exponent" is different 
from the former one, obtained in the context of "crossing statistics" (see 
Fig. 5). 

Our last numerical experiment with velocity-velocity correlation func- 
tions concerns the ~ - H  case: since in the D case varying geometrical 
parameters proved to be useful, we adopted the same point of view here, 
with the goal to see a clear transition to power-law decay (which was not 
exhibited, for instance, by the parameter choice of ref. 7). In Fig. 11 we 
show a case in which the transition to 1/t behavior seems evident; further 
cases will be dealt with elsewhere: a really challenging problem is whether 
rigorous arguments can predict the extent of the (exponential) transient 
behavior, which holds for quite a long time in a number of cases. 

While we feel confident that the data strongly push toward the conclu- 
sion that velocity-velocity correlation functions decay in a pure exponen- 
tial fashion for the D case, still we have to reexamine older attempts, ~6J 
which led to different conclusions. So now we consider correlation functions 
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involving characteristic functions of some subset of the phase space: if 
~r c Jg, the corresponding correlation function is defined as 

~ , ( t )  = <z~,(t).z..,(0)>l__ v ~ - )  ~ - Vo/(d)[ (14) 

where ( . . . ) d  denotes a phase average, ruled by the invariant measure, 
with initial conditions belonging to d .  We remark, in the spirit of the ideas 
mentioned in the introduction, that here we are treating dynamical 
variables of a much less smooth character, so a priori we do not expect the 
same features governing correlation decay. By inspecting Figs. 12 and 13 
we see that many of the regularity features we reported upon are lost: the 
oscillations look much less regular than in the former case (and this is con- 
nected to symmetry loss in the choice of d ) ,  but, more strikingly, no clear 
pure exponential decay is exhibited (while the pattern of maxima is 
apparently compatible with subexponential behavior; see Fig. 13). While 
this behavior might be due to abnormal transients [ even if the decay seems 
robust with variation of the ratio vol(d)/vol(Jg),  which is of the order of 

o. 
C ~  ' i " I ' I " I ' I ' I ' I ' I ' I " g " i " I ' I " I " I ' 

t J i ~ , I i i l i I 

................ !!l 
0.0 5. 10. 15. 20. 25. 

t 

Fig. 12. l n ~ , ( 0  vs. t for a D case R=2.236,  N p h = 2 . 5 x l 0  ~, x s [ 0 , 0 . 2 5 ] ,  y ~ [ 0 , 0 . 2 5 ] ,  
0r ~[0.1,  1.1]); the inset represents the same data, but plotted as In Iln C(t)l vs. In t; a 
stretched exponential fit on nonnoisy minima gives 7~ = 0.531 _+ 0.002 [cf. (6)].  
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0.002 [cf. (6)]. 

1/50 in our computations], we remark that it is also compatible with the 
view that correlations are very sensitive to the degree of smoothness of the 
dynamical functions employed, with loss of smoothness inducing slower 
decays. 

4. CONCLUSIONS 

Though the problem of correlation decay has long attracted the atten- 
tion of the dynamical system community, many issues are still unresolved 
and much effort is still being devoted to gaining a better understanding. 
Here we have addressed the problem of numerical investigations on 
dynamical systems with singularities: through a number of techniques the 
theoretical expectations for marginally stable situations have been 
reproduced (even though it would be important to have a pr ior i  rigorous 
estimates of initial transients). When the system is hyperbolic (still retain- 
ing singularities), velocity-velocity correlation functions are shown to 
exhibit pure exponential decay: moreover, the decay rates seem to scale 
regularly with variations of the geometrical parameter: similar scaling 



Numerical  Experiments on Billiards 165 

relations seem to hold for survival probabilities. This is apparently in 
accord with recent rigorous results ~s" s~ as well as numerical experiments in 
ref. 7. Correlation functions involving less smooth phase functions exhibit a 
more complex behavior: whether this is due to abnormal transients or 
indicates a qualitative change is still an unresolved issue, which we believe 
is relevant to a deeper understanding of this class of dynamical system. 
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